首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1546篇
  免费   163篇
  国内免费   19篇
电工技术   73篇
综合类   39篇
化学工业   234篇
金属工艺   18篇
机械仪表   103篇
建筑科学   18篇
矿业工程   11篇
能源动力   934篇
轻工业   8篇
水利工程   1篇
石油天然气   11篇
武器工业   1篇
无线电   24篇
一般工业技术   191篇
冶金工业   4篇
原子能技术   10篇
自动化技术   48篇
  2024年   7篇
  2023年   46篇
  2022年   34篇
  2021年   48篇
  2020年   117篇
  2019年   89篇
  2018年   38篇
  2017年   48篇
  2016年   68篇
  2015年   55篇
  2014年   95篇
  2013年   133篇
  2012年   118篇
  2011年   91篇
  2010年   84篇
  2009年   97篇
  2008年   55篇
  2007年   91篇
  2006年   70篇
  2005年   54篇
  2004年   35篇
  2003年   34篇
  2002年   42篇
  2001年   30篇
  2000年   21篇
  1999年   24篇
  1998年   12篇
  1997年   9篇
  1996年   10篇
  1995年   4篇
  1994年   5篇
  1993年   3篇
  1992年   9篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1981年   2篇
  1980年   2篇
  1973年   3篇
  1972年   3篇
  1970年   1篇
  1968年   5篇
  1967年   2篇
  1965年   1篇
  1951年   4篇
排序方式: 共有1728条查询结果,搜索用时 15 毫秒
991.
《能源学会志》2020,93(2):752-765
Zhundong (ZD) coal from northwest China is a high quality steam coal with reserves of more than 390 billion tons. However, the utilization of ZD coal is limited due to the high content of alkali and alkaline earth metals. This study aimed at revealing the release and transformation mechanism of Na/Ca/S compounds during combustion/gasification of ZD coal. The results demonstrate that Na was primarily influenced by temperature, mostly releases at 600–800 °C. The transformation of Ca compounds was affected by both temperature and atmosphere. The high temperature of the combustion process could accelerate the decomposition of CaCO3 and CaSO4, and the high content of CO2 during gasification prolonged the decomposition of CaCO3. The transformation of S was primarily influenced by atmosphere. SO2 could react with CaO and form CaSO4 during the combustion process. While S compounds were mainly released as S (g) and H2S (g) during gasification process. There was a significant interaction among Na/Ca/S compounds during combustion, original CaSO4 in coal could adsorb Na compounds with SO2 at 600–800 °C and then reacted with aluminosilicates, by this reaction, Na could be fixed above 1000 °C.  相似文献   
992.
《能源学会志》2020,93(5):1798-1808
The investigation on evolution of coal char structure during pressurized pyrolysis can reveal the combustion reactivity of coal char in thermal utilization at elevated pressure. In this study, Zhundong subbituminous coal was demineralized and a pressurized drop tube reactor (PDTR) was used to prepare coal char under different temperature and pressure conditions. The physicochemical structures of raw and demineralized coal chars were characterized by the application of nitrogen adsorption analyzer, automatic mercury porosimeter, and Fourier transform infrared spectroscopy (FTIR). The change mechanism of char infrared structure with pyrolysis pressure is revealed on the molecular level in this paper. The results show that the N2 adsorption quantity of raw coal char increases with the increase of pyrolysis temperature, while that of demineralized coal char decreases. Because of the difference in molecular volume and steric hindrance between aliphatic and aromatic structure in char, the increasing pressure has less inhibition effect on the escape of the former than the latter. With the increase of pyrolysis pressure, the combustion reactivity of char is related to the infrared structure at 700 and 800 °C while to macropore structure at 900 and 1000 °C.  相似文献   
993.
《能源学会志》2020,93(5):2074-2083
Gaseous sulfur is released during fluidized bed coal gasification, and control the yield of gaseous sulfur or the conversion between gaseous organic sulfur and inorganic sulfur at source is necessary, because it can economically satisfy the requirements of industrial production and protect the environments. In this study, sulfur release behaviors of a middle-sulfur coal called Guizhou coal were quantitatively determined through controlled experiments in a lab-scale fluidized bed during oxygen rich-steam gasification. The measured gaseous sulfur species were H2S, SO2, COS and CS2. The effects of temperature (850OC-950OC) and limestone (Ca/S = 2) on the sulfur release behaviors were investigated. Among the above four gaseous sulfur, the yield of H2S is the highest, followed by COS, while only less than 1.5% of sulfur in coal is released as SO2 and CS2. With the increase in temperature, the yield of H2S increases while that of SO2 decreases, and the change of COS yield and CS2 yield is not obvious. The molar ratio of H2S/COS increases with increasing temperature, which is qualitatively matched by thermodynamic analysis. The addition of limestone reduces the released sulfur but not change the distribution of gaseous sulfur forms. Meanwhile, the molar ratio of H2S/COS increases after adding limestone, while the trend with temperature of H2S/COS does not change. The removal rate of H2S is between 23% and 28%, which increases with temperature. The distributions of sulfur in bottom char and fly ash are similar. The main sulfur species in the bottom char is organic sulfur, and thiophene dominates the organic sulfur. The increase of temperature and the addition of limestone will both promote the increase of inorganic sulfur content, and the decrease of organic sulfur content.  相似文献   
994.
《能源学会志》2020,93(6):2264-2270
The contents of chlorine and sodium in Xinjiang Shaerhu (SEH) coal are extremely high, leading to severe slagging. In this paper, the slag was sampled from a circulating fluidized bed (CFB) boiler purely burning SEH coal, to analyze the slagging mechanism based on the characterization of morphology and composition. The results show a three-layer structure for the slag sampled from the buried heat-exchanger in the dense-phase zone of the CFB boiler. The inner layer close to the heat-exchanger is NaCl, which enhances the adhesion of ash particles, while the middle layer and the outer layer are mainly composed of Ca2Al2SiO7 and other Si–Al materials. In comparison, the slag sampled from the refractory wall shows a molten state without a layered structure and mainly composed of NaCl, NaAlSiO4, Ca2Al2SiO7, and CaSiO3. The effect of mixing bed material, on the ash melting and release of chlorine and sodium was further conducted, which indicates that the mixing of bed material has no significant effect on the release of chlorine(Cl) and sodium(Na) but highly affects the melting temperature and compositions. The ash fusion temperature reaches the lowest with a 50% mixing ratio of bed material, which is 120 °C lower than that of SEH coal ash. This study can provide better guidance for controlling severe slagging, from the combustion of high Na and Cl coal in industrial furnaces.  相似文献   
995.
We proposed a novel efficient operation scheme for a thermal power plant’s air-cooling system based on peak shaving, in order to cope with high ambient temperature in summer. We introduced an absorptiongeneration equipment with water/lithium working pairs into the air cooled condenser(ACC) to reconstruct the traditional thermal power plant, and established a dynamic thermodynamic model adopting Ebsilon code. We studied the thermodynamic performance variation of the reconstructed thermal power plant throughout a 24-hour cycle and found that the fluctuation ratio of the turbine back pressure decreased to 6% from 78%, which is beneficial for the stable and safe operation of the electric power system. The thermal performance improvement benefited from the exploitation of the heat transfer potential of ACC, which realized via cold duty schedule throughout the day, under different ambient temperature conditions. In this system, the generated power was higher at relatively high ambient temperature than that at relatively low ambient temperature, which solved the electricity demand-supply imbalance problem under high ambient temperature. Finally, the same optimization effects for power thermal plants with an indirect air-cooling system were obtained using the same operation scheme.  相似文献   
996.
The experimental studies and numerical simulation were conducted on the effects of the dome fuel distribution ratio on the lean blowout of a model combustor.The experimental results indicate that as the key parameter,the dome fuel distribution ratio,increases from 2.06%to 16.67%,the lean blowout equivalence ratio declines obviously at the beginning,and then the decrease slows down,in addition,the amplitude of the pressure fluctuation in the combustor reduces significantly while the dominant frequency keeps basically constant.In order to analyze the experimental results,the numerical simulation is adopted.The temperature and local equivalence ratio distributions are employed to explain the reason why the lean blowout performance improves with the increase of the dome fuel distribution ratio.  相似文献   
997.
《能源学会志》2020,93(6):2464-2473
Coal-fired power plants require higher flexibility and a broader range of the operating temperature than before to accommodate the load regulation of the power grid. The relationship between the reaction temperature and the characteristics of particulate matter (PM) need to be better understood. In this study, Zhundong coal combustion was conducted in a drop tube furnace at different reaction temperatures in air. The PM characteristics and elemental contributions are investigated in detail. The experimental results show that the mass yields of PM0.4 and PM0.4-10 are non-monotonic with the reaction temperature. The competition between the generation of inorganic fumes and the removal of inorganic fumes by Si–Al-bearing minerals governs the mass yield of PM0.4. At higher reaction temperature, generation of Ca, Mg, Fe-containing fumes increases, contributing most to the increment of PM0.4; while the sulfation of chlorides is inhibited, resulting in more Cl in PM0.4. The S content in PM0.4 is mainly affected by the sulfation of AAEMs (alkali and alkaline earth metals) oxides. The mass yield of PM0.4-10 is controlled by the competition between the fragmentation of char or mineral particles and the coalescence of mineral particles. For Zhundong coal combustion, the reaction temperature is recommended to be 1273K–1373K to control PM emission.  相似文献   
998.
《能源学会志》2020,93(6):2399-2408
Phosphorus effect on ash fouling deposition produced during combustion process of sewage sludge solid fuel is a very important factor. Previous studies have only focused on decrease of the ash melting temperature and increase of slagging and sintering by phosphorus content. Therefore, research regarding combustion fouling formation and its effect on temperature reduction of deposit surface by phosphorus content is insufficient. Ash fouling is an important factor, because ash in the combustion boiler process deposits on the surface of heat exchanger and interferes with heat exchange efficiency. In particular, temperature reduction of heat exchanger surface via fouling should be considered together with fouling deposition, because this is related to the heat exchanger efficiency. Synthetic ash, phosphorus vaporization, and drop tube furnace experiments were performed to investigate effect of phosphorus on ash fouling formation and temperature reduction of deposit surface under combustion condition. Phosphorus was highly reactive and reacted with ash minerals to produce mineral phosphate, which promoted ash fouling deposition during the combustion experiments. In contrast, the occurrence of sintering on deposited fouling resulted in formation of a large hollow structure, which alleviated the temperature reduction on the deposit surface. Phosphorus content had a substantial correlation with fouling deposition behavior and influenced reduction in the surface temperature of the heat exchanger, because it led to generating low temperature mineral phases.  相似文献   
999.
端壁造型在叶轮机械中的应用与发展   总被引:1,自引:0,他引:1       下载免费PDF全文
对一项新的设计技术-端壁造型技术的发展历史进行了回顾.端壁造型技术可以降低端壁区二次流损失,其提高效率的作用已经在涡轮中得到了广泛的验证,相关结论可以直接被工程采用.端壁造型技术在压气机中的研究虽晚于其在涡轮中的研究,但最新研究表明:端壁造型在改变跨音压气机激波结构,改善压气机稳定工作裕度,以及降低静叶角区分离等领域能够发挥一定作用.端壁造型技术反应了人们利用复杂型面来提高叶轮机械性能的研究趋势,值得研究者在未来开展更深入的研究.  相似文献   
1000.
对具有128.5°折转角的高负荷平面涡轮叶栅的内部流场进行了数值模拟.结合前期的实验结果,并利用拓扑学理论,详细分析了弯叶片对叶栅内附面层发展及旋涡运动的影响.结果表明,以通道涡为主的集中涡系在高负荷涡轮叶栅中部强烈掺混,使得中部的能量损失系数(0.56)明显高于端部(0.07),这是反弯叶片能改善此类叶栅整体气动性能的原因.对附面层迁移理论作了进一步讨论后指出,在高负荷涡轮叶栅内采用弯叶片减少二次流损失时应重点考察自由涡层的迁移.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号